The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  2  1  2  2  1  X  2  X
 0 2X+2  0  0  0  2 2X+2  2  0 2X 2X+2 2X+2  0 2X 2X+2 2X+2  0 2X+2 2X+2  2  2 2X+2  0 2X  2  0 2X+2 2X  0 2X 2X+2  0 2X+2 2X 2X+2  0 2X  0 2X+2  2 2X 2X+2
 0  0 2X+2  0  2  2  2 2X  0 2X  2 2X+2  2  2 2X 2X  2  2 2X+2 2X 2X+2 2X 2X  2  0 2X 2X  2  0 2X+2 2X+2 2X+2  0  2  0 2X  2 2X+2 2X+2  2 2X 2X
 0  0  0 2X+2  2 2X 2X+2 2X+2  0 2X+2 2X 2X+2  2  0 2X+2  0 2X+2  2 2X+2 2X  2  0 2X+2 2X 2X+2  2  2 2X+2  2  0 2X  0 2X  2  0 2X 2X  0 2X  0 2X+2  0
 0  0  0  0 2X 2X 2X 2X 2X 2X  0  0  0 2X  0 2X 2X  0 2X 2X  0  0  0  0  0  0 2X  0 2X 2X 2X 2X 2X 2X  0  0  0  0  0  0 2X 2X

generates a code of length 42 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 37.

Homogenous weight enumerator: w(x)=1x^0+50x^37+106x^38+158x^39+160x^40+320x^41+518x^42+320x^43+150x^44+126x^45+60x^46+22x^47+7x^48+12x^49+17x^50+12x^51+2x^52+4x^53+2x^54+1x^66

The gray image is a code over GF(2) with n=336, k=11 and d=148.
This code was found by Heurico 1.16 in 31 seconds.